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Abstract

The design of an inductance/capacitance two-terminal distributed passive electric network for simultaneously con-
trolling several flexural modes of vibration is discussed. The efficiency of the network to annul multimode vibrations of
simply supported, clamped—clamped and cantilever beams is demonstrated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The number of industrial applications of smart structures that can self control their vibrations has been
steadily growing over the last several years. The traditional design has involved embedding sensors and
actuators into the system, the former to sense and the latter to control the motion (following the ideas de-
scribed in Hagood and von Flotow (1991)). It is now possible to design an integrated system in which the
control subsystem is not based on the paradigm of sensing—evaluating—actuating, but is an integral part of
the system. Thus the structure is self-controlled. Examples of such systems are the piezoelectromechanical
(PEM) beams and plates studied in Alves Rade and Valder (2000), dell'Isola and Vidoli (1998), Lesieutre
(1998), Vidoli and dell’Isola (2000), Vidoli and dell’Isola (2001), Hagood and von Flotow (1991) and Park
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and Inman (2003). The design of such systems involves the transfer, by means of a distributed array of piezo-
electric transducers, of the mechanical energy into the electric energy which is then dissipated. The electric
circuit does not include an active controller and, therefore, no external ““ intelligence” is required to damp
out mechanical vibrations.

We study here the problem of controlling flexural vibrations of a beam. More specifically, we design the
two-terminal network forming the basic modules of a periodic transmission line that can simultaneously
control several flexural modes of vibration of a beam. We generalize the results found in Fleming and Reza
Moheimani (2002), Wu (1998) and Hollkamp (1994) where the multifrequency control concept is exploited
for systems in which a single PZT actuator feeds a multiresonant electric circuit.

The paper is organized as follows. Section 2 reviews elementary results for vibrations of uncoupled
mechanical and electrical systems and gives a mathematical formulation of the problem. Section 3 describes
the design of an electrical network for simultaneously controlling a given number of flexural modes of
vibration of a beam. Applications of the proposed device to annul vibrations of a simply supported beam,
clamped—clamped beam, and a cantilever beam are described in Section 4. Section 5 summarizes conclu-
sions. Three appendices give detailed derivation of some of the results presented in the paper. The deriva-
tion of governing equations of the electric network is given in Appendix A. In Appendix B, we describe the
procedure used to numerically solve equations governing the coupled electromechanical deformations of
a beam with PZT patches. The impedance required in the electrical circuit is determined in Appendix C.

2. Statement of the problem
2.1. Mathematical framework

Consider two systems governed by the following partial differential equations and boundary conditions:

Lu(w) + Do) =0, DL(Lo(v)) + D2(v) = 0, (1)

Bu(w) =0, Bi(v) = 0. (2)

Here w and v are kinematical descriptors, L, and L, are linear self-adjoint spatial differential operators, and
Dy, D! and D? are linear differential operators in the time domain. Eq. (2) express the pertinent boundary
conditions. The subscripts “m” and “e¢” stand for mechanical and electrical systems respectively.

We assume that L,,, Dy,, By, L. and B, are given; moreover D, is assumed to be a second order time
operator representing the standard dynamics. In order to establish a multiresonance phenomenon between
the m and the e-subsystems, electric circuits are designed in Vidoli and dell’Isola (2000) and Andreaus et al.
(2004) such that

L.= Ly, D!=Identity, D= Dy.

In other words the goal of the work presented in Vidoli and dell’Isola (2000) and Andreaus et al. (2004) was
to find the circuit topology so that the circuit had the same spatial differential operator as the mechanical
system to be controlled. Instead here we assume L. to be given (the simplest connection is chosen) and find
the time differential operators D! and D?. More precisely, D! and D? are chosen so that n eigenfrequencies of
the boundary-value problem defined by Egs. (1); and (2); coincide with the n eigenfrequencies of the
boundary-value problem specified by Egs. (1), and (2),. This reduces to tuning the e-system on a certain
number of frequencies of the m-system thus establishing a multiresonance phenomenon.
To achieve this goal, we seek standing wave solutions of Egs. (1) and (2)

{w, 0} = {w, v} e*en, (3)
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where k is the wavelength, p the frequency, i = v —1, and W and V are amplitudes. Substitution for w and v
from (3) into (1) and (2) gives

Sm(k) - Tm(p) =0, Se(k) _F(p) =0,

Pu(k) =0, Pe(k) =0, “)

where

F(p) =Te(p)/Te(p), (5)

and Sy, T, T; and Tg are polynomial functions, and P, and P, are polynomial combinations of exponen-
tial functions constraining the admissible values for the wavelengths k. Indeed boundary conditions (4)s 4
constrain the admissible discrete values of o; and f,, j=1,2,..., i.e., the m-wavelengths and the e-wave-
lengths respectively. As usual, once the admissible wavelengths have been found, eigenfrequencies p are
solutions of Egs. (4); . Let

sj=A{p: Sm(%) = Tm(p) = 0}, 0, ={p: Se(B)) — F(p) = 0}. (6)

For each g (i.e., for each mode shape), the set s; is a couple of complex conjugate solutions, since, by the

assumptions on Dy, Ty, is a second order polynomial with real coefficients. However, for each f;, the set o;

can be a larger set of complex conjugate solutions since F is a rational function with real coefficients.
Therefore we need to solve the following

Problem 1. Find the rational function F(p) so that, for given sets (o,00,...,0,) and (B, ..., 0. of
m-wavelengths and e-wavelengths respectively,

s;Co;, j=1,2,...,n.

Hence, once the two sets of n corresponding mode shapes have been chosen, n self-resonance phenomena
are established between them.

2.2. Description of the system

The aforementioned tuning procedure is illustrated by a suitable choice of the m- and the e-systems,
namely an Euler beam and an electric transmission line respectively.

Fig. 1 shows a sketch of a typical problem studied: the system is comprised of a prismatic rectangular
beam with a set of rectangular piezoceramic (PZT) actuators affixed to its top and/or bottom surfaces.
The abbreviation PZT is used for a generic piezoelectric ceramic rather than a specific material. The

PZT transducers

Fig. 1. Sketch of a typical problem studied. Z is the impedance of a LC two-terminal network, and R is a resistor.
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PZT patches are interconnected through resistors R and electric impedances Z to form an inductor—
capacitor (LC) two-terminal network (TTN).

Our goal is to determine the impedance Z so that some frequencies of the electrical network (the e-
system) match with the desired frequencies of the beam (the m-system). The transfer of mechanical energy
into electrical energy is assured by the electromechanical coupling of the PZTs distributed along the beam.
Even though a finite number of PZT actuators are employed, we treat the electric circuit as a continuum.
This is reasonable since the wavelengths of the mechanical disturbances to be controlled are much larger
than the distance between adjoining PZT patches.

2.2.1. m-system
The beam is modeled as an Euler beam; hence, with a suitable choice of non-dimensional variables, its
equation of motion can be written as

w’ + b =0, (7)

where w is the dimensionless transverse displacement, a prime (superimposed dot) denotes derivative with
respect to the dimensionless space (time) variable. The spatial coordinate is normalized by the beam length
¢ and the time by 2 /@ where @* = EI,/pt*. Here E is Young’s modulus, p the mass/length for the material
of the beam and 7, the area moment of inertia about the bending axis.

By comparing (7) with (1); and (4); we get

Lon(w) :== W, Dp(w):=ib, Sw(k):=k* Tu(p):=p

Once suitable boundary conditions are chosen for the beam, the set M, of the admissible discrete wave-
lengths {o, j=1,2,...} is determined; therefore the m-eigenfrequencies are

s,-z:l:iocjz,7 j=12 ... (8)

2.2.2. e-system
The transmission line is governed, in the Laplace domain, by the following equation for the dimension-
less voltage v:

—"+pf(P)v=0, [(p)=LaCZ(pa), ©)

where f(p) represents the dimensionless impedance, C is the capacitance per unit length of the transmission
line and Z is the impedance per unit length. We note that the telegraph equation, which governs the stan-
dard transmission line, is recovered by assuming the impedance Z to be a simple inductance (i.e.,
fip) = Aop). As shown in Vidoli and dell’'Isola (2000) the standard transmission line can be tuned (i.e.,
choosing the value of the parameter Ay) to control only one m-eigenfrequency. The derivation of (9) is given
in Appendix A; for the tuning procedure the line is assumed to be non-dissipative, that is R — oco. However,
some dissipative cases will be discussed for finite values of R; indeed optimal values of the resistance R are
sufficiently high not to affect the tuning effectiveness while dissipating the electrical energy.
A comparison of (9) with (1), and (4), gives

Le(v) = 0", Se(k) ==K, F(p):=—pf(p). (10)
Once suitable boundary conditions are chosen for the transmission line, the set M, of the admissible dis-
crete wavelengths {f,,7=1,2,...} is determined; therefore the e-eigenfrequencies are

o;={p:pf(p) = —H}. (11)

Note that depending upon the order of the rational function f{p) each electric mode shape can have more
than one resonant frequency.
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Problem 1 is now reformulated as follows.

Problem 2. Let My, C My, be the set of n mechanical mode shapes to be controlled and (o, sn), h € My, be
their wavelengths and eigenfrequencies. Let g : My, — M. be a one to one correspondence between the chosen
mechanical modes and the electrical modes. Find the impedance f(p) such that

sy C 0oy for every h € Zl7[m,
which, in view of (8) and (11) is equivalent to
iaﬁf(iocﬁ) = _ﬁ:,(h)- (12)

The correspondence g can be obtained by maximizing the inner product between the electrical mode shape
and the image under the coupling operator of the mechanical mode shape.

3. Tuning procedure

For f{p) to be the impedance of a LC TTN (inductor—capacitor two-terminal network), it must be a real
and positive function representable as

Ao[[= 11 (z; +p?)

f(p) = ) AOaZiapi € Ra (13)
15 (22 + )
where
<P <z2<py,<zz<p3y-- (14)

Therefore, Problem 2 is equivalent to Problem 3 defined below.

Problem 3. Find a rational function f(p) satisfying conditions (13) and (14) and interpolating n points

ﬁj_(”)) where g is the correspondence relation defined in Problem 2 and h € M,
h

(102,
The following results on interpolation by rational functions (see Walsh, 1960) are essential to solve Prob-
lem 3.

Theorem 1. Let points ({,(5,...,{, € C, not necessarily distinct, be given. Here C is the set of complex
numbers. Also, let points 0,1y, ...,1,.1 € C distinct from {; but not necessarily distinct from each other, and
values uy, Uy, . .., U, € C be given. Then there exists a unique rational function, r(p), of the form

bopmfl + blpm—z 4+t bm

15
- p-5) G 1)
which takes on the values . at the points ;.
Corollary 1. If 5y # 1o - -+ # Wu+1, then the rational function, r(p), is given by
m+-1
U - 16
Z ¢ (P ”Ik w (Wk) (16)
where
w(p):(P_ﬂl)(P_ﬂz)"‘(P_’?mH). (17)

P-0)p=0G)(p—0C)
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Hence, to find a solution f{p) of Problem 3, we use the interpolation formula (16) with

2
(o= Fip, n=FHog, = (lgi(zk)) , m=2n-—1, (18)
k
where # is the number of mechanical modes to be controlled. With some arrangement we obtain
/) _ N Be\ 1 |
2 =S o) (5 — (19)
= % /) | (p+ialwm) o' (<ia(w)”)  (p—ia(a))o' (a(w)")
with
(l)(p) _ (p2+(x?)(p2+oé)”'(p2+aj+l) (20)

P p) )
The function f{p) given by (19) trivially satisfies (13). In order to also satisfy condition (14) we choose poles

pr interlaced with the values of ;. In particular, we assume that

» :7]/;+1+7Ik7 k=12,

5 5 .oon—1.

3.1. Remarks on eigenfrequencies of the electric circuit

In this section a further insight on eigensystem of the electric circuit is provided. The dispersive relation
(11) for the e-system and the form (13) for the function f{p) give

2A0H:‘:11 (z +p°)
[T (0F +p?)
For each value of 5, we obtain 2n solutions for the complex frequency p. For high values of the electric
wavelength f we note that

n—1 ) A n:l 22+ 2
{p: (P?+p2)=0} Cﬁgrfw{p:pz—OE[ill(’ 7)o, (22)

+p=0. (21)

i=1 i=1 (plz +p?)
i.e., 2(n — 1) of the 2n solutions of the dispersive relations converge to the limit values given by the poles

of fip).

For n =3, Fig. 2 evinces qualitatively the eigenstructure. For

o) = i)

P+ o) (P +a3)’
we have plotted as solid vertical lines positions of the electric eigenfrequencies. We can easily recognize
three (equal to the number 7z of controlled modes) different clusters. The first two clusters have as accumu-
lation points the two poles of the function f{p), while the accumulation point of the last one is at +oo.

As shown in Fig. 2, to each mode shape corresponds an eigenfrequency in each cluster; more precisely to
the jth mode shape corresponds the jth eigenfrequency in all clusters.

This behavior of the electric system has important consequences in a numerical solution of the evolution
problem (see for instance example 3), and will be taken into account in the subsequent modal analysis.
More precisely, the determination of the response of the system to forcing terms whose frequency band
is near the accumulation points requires a careful analysis since many different mode shapes can be excited
within a very small frequency range. However, if the forcing term has a sufficiently smooth distribution

(23)
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Fig. 2. For n = 3, eigenfrequencies of the electric system are indicated by solid vertical lines; the accumulation point of the third cluster
is at + oo. The corresponding mode shapes are depicted at the top of the figure.

along the beam, its projection onto the mode shapes involved in the given frequency range is very small and
can be neglected.
The procedure to find the impedance of a LC TTN is given in Appendix C.

4. Applications

The effectiveness of the designed device as a damper of mechanical vibrations is now illustrated by three
examples differing in the prescribed boundary conditions. In each example more than one mode of vibra-
tion is controlled simultaneously in order to demonstrate the effectiveness of the proposed method. We note
that the aforementioned tuning procedure is based on the analysis of the uncoupled system. Once the inter-
polation problem has been solved and the multiresonant circuit has been synthesized, the electrical and the
mechanical systems are coupled through the piezoelectric actuators and the evolution of the entire system is
investigated.

In terms of non-dimensional variables, deformations of these electromechanical systems are governed, in
the Laplace domain, by

pw+w" —py” — pwy — vy =0,
IO = 3"+ 3f (P =L Pwg =0,

where  is the dimensionless electric flux linkage (i.e., a time derivative of the electric potential),
7 = kue/l+/p is the dimensionless piezoelectric coupling coefficient and

(24)

wo(&) =w(&,0),  vo(&) =w(¢,0). (25)
For all problems studied a Galerkin procedure will be used by considering the following expansions:
w(&p) =N(EW(p), ¥(&p)=n(&)¥(p), wo(&) =NEOW’, u(&) =NV, (26)

where N(¢) and n(¢) are vectors of suitable basis functions, while W(p), ¥(p), W’ and V° are the associated
coefficients for the mechanical and the electrical mode shapes. Eq. (24) reduce to the following algebraic
system for the unknowns W(p) and ¥(p):
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MW (p) + KuW(p) — 7pC¥(p) — pMuW° + M, V° = 0,
PFPMF) ~ K¥p) + 2/ (W) TP erwe o

where
1 1 1
_ T _ 11 2\ TNg? _ 1T
M, = / NEOTNE)E, Ky = / N'(OTN'(8)de, €= / N (&)W (&)dz,

M, = /0 n(&)'n(6)dé, K. = /0 ' (&) ' (&)de.

The coupling between the coefficients of the mechanical and the electrical mode shapes is determined by the
matrix C; thus this matrix determines the choice of the one-to-one correspondence g introduced in Problem
2. M, and K, are, respectively, the mass matrix and the stiffness matrix for the mechanical problem.

We note that in some cases Eq. (27) can be solved analytically, but in general we must seek numerical
solutions even when the uncoupled governing equations have closed form solutions.

4.1. Simply supported beam

The mechanical boundary conditions for the simply supported beam are
w(0,p) =0, w(l,p)=0, w'(0,p)=0, w'(l,p)=0. (29)

In order to get the same mode shapes for the electrical system, the two ends of the electric line must be
grounded; that is

¥(0,p) =0, yY(1,p)=0. (30)

Let us assume that the first four modes of vibration are to be controlled. Thus the rational function f{p) will
have six poles and seven zeroes. For the chosen boundary conditions, the /4th mechanical and electrical
mode shapes are equal, and the correspondence function g is trivially defined as g(/#) = h.

Fig. 3 shows the function f{p)/p and the dimensionless impedance f{p) for p = iw. The frequency response
functions (FRFs) of the tuned uncoupled mechanical and electrical systems are exhibited in Fig. 4. It is
clear that the first four frequencies of the mechanical system coincide with four of the resonance frequencies

.

50 100 150 200

Fig. 3. Solid curves illustrate the function f{p)/p interpolating the points corresponding to the ordered set (mechanical wavelength,
mechanical eigenfrequency) and having given poles; dashed curves show the computed impedance f{p). Both are evaluated on the
imaginary axis, i.e. for p =iw. Dots are poles of the function f{p).
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0 a0 100 150 200 250 300

Fig. 4. Frequency response functions of the electrical (solid) and the mechanical (dashed) systems.

of the electrical system. The large bandwidth of the electrical FRF for the designed system, as depicted in
Fig. 4, reveals the robustness of the proposed technique. The electric FRF (solid curve) has a relevant band-
width around every peak of the mechanical FRF (dashed curve). Hence, if the frequency of a given mechan-
ical mode, say 4, is consistently mismatched, this mode can possibly be coupled with an electrical mode
h + 1. In this case, the efficiency of the system in damping out vibrations is not noticeably affected. In order
to overcome systematic mismatching of all mechanical modes, it is better to adaptively tune the electric

subsystem.
The eigenfunctions of the uncoupled systems are chosen as the basis functions:
Nl(f) an((f) :Sin(aj‘f)7 w=jr, j=12,... (31)

The system (27) becomes
PPW,(p) + W i(p) + o2yp¥;(p) — pdjn = 0,
pf(0)¥(p) + o5 ¥,(p) — w39pW ;(p) + aif%éjh =0, j=1,...,n,

where 0, is the Kronecker delta and we have taken vy = 0 and wy=sino;,¢. Solving the system (32) for the
unknown functions W;(p) and ¥;(p) we get the following non-trivial solutions only for j = .

wp+ (P + o}y f(p)
(o + ) + (P> + (T +P)f (p)”
o 207/ (p)
) = = e ) T R + BN

The inverse Laplace transform of these expressions provides the time dependence of the modal coefficients.

Fig. 5a exhibits, for the undamped case (i.e., R — oo) the time evolution of the modal coefficients for
initial conditions on each of the first four mechanical modes, as well as the time history of the energy con-
tent of both systems. There is no spill-over effect; that is, given an initial condition on the jth mechanical
mode, the electromechanical coupling will occur only between the jth mechanical and the jth electrical
modes. In Fig. 5b, we have plotted results similar to those of Fig. 5a but with a classical transmission line
(i.e., f(p) = Ao p) tuned on the first mechanical mode. Whereas the classical transmission line and the pres-
ently proposed circuit perform equally well in terms of the energy exchanged between the mechanical and
the electrical systems for the first vibration mode, for the other modes the present device performs consid-
erably better. This is because the present device has been tuned to the first four mechanical modes. Fig. 6a
and b show the time evolutions of the mechanical and the electrical systems with damping added to the

(32)

W;(p) =

(33)
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Fig. 5. For the undamped case, the time evolution of the electrical (dark) and the mechanical (grey) systems, starting from initial
conditions on the first four mechanical modes. Thin and thick lines represent modal coefficients and energy content respectively. The
dashed line represents the total energy of the system. The dimensionless time has been chosen so that the time period of the first mode
of the simply supported beam equals 1. (a) LC TTN circuit optimized according to the present work; (b) standard transmission line
tuned on the first mechanical mode.

proposed device and the classical transmission line. Again, the proposed device performs much better than
the classical transmission line.

4.2. Clamped—clamped beam

In the case of a clamped-clamped beam we cannot provide a semi-analytical solution as was done in the
previous example. Now boundary conditions are

w(0,p) =0, w(0,p) =0, w(l,p)=0, w(l,p)=0, ¥(0,p)=0, ¥(l,p)=0. (34)
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Fig. 6. For the damped case, the time evolution of the electrical (dark) and the mechanical (grey) systems, starting from initial
conditions on the first four mechanical modes. Thin and thick lines represent modal coefficients and energy content respectively. The
dashed line represents the total energy of the system. (a) LC TTN circuit optimized according to the present work; (b) standard
transmission line tuned on the first mechanical mode.

We assume that the first two modes of vibration are to be controlled so that the rational function f{p) will
have two poles and three zeroes. The basis functions are chosen to satisfy the uncoupled eigenvalue
problems:
Ni(&) = ¢y sin(o;€) + ¢ cos(0;:E) + ¢3 sinh (o €) + ¢4 cosh (o),
ni(&) = sin(B;€).
The system (27) becomes
PWi(p) + oW (p) + 9pC,Wi(p) — pWi + V) =0,

35
2F(),(0) + B, (p) + 3pC, (o) — vf—@’cﬁW? —0, j=1,....n 3



3126 R.C. Batra et al. | International Journal of Solids and Structures 42 (2005) 3115-3132

Mode 3
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Fig. 7. Time evolution of the electrical (dark) and mechanical (grey) systems, starting from initial conditions on the first two
mechanical modes. Thin and thick lines represent modal coefficients and energy content respectively. The dashed line represents the
total energy of the system; (a) undamped, (b) damped.

The coupling matrix C is quasi-diagonal; this means that the projection of the #th mechanical mode on all
electric modes has the most relevant contribution only along the Ath electric mode; thus the correspondence
function g is again defined as g(h) = h.

Eq. (35) is solved numerically. Fig. 7a and b exhibit, for the undamped and the damped cases, respec-
tively, the time evolution of the modal coefficients for initial conditions on each of the first two mechanical
modes. As in the previous example, the proposed device performs very well in controlling the two modes of
vibration of the beam. The time evolution of the energy content shown in Fig. 7a provides a proof (neces-
sary but not sufficient) of the efficiency of the used modal expansion.

4.3. Cantilever beam

The proposed technique is now applied to a cantilever beam. As already mentioned, the tuning proce-
dure is based on the uncoupled systems; however, in this case the modal expansion used in the previous
two examples does not provide a convenient solution. In fact the boundary conditions to be used in the
present application are such that the use of purely electrical and mechanical vibration modes in Fourier
expansion does not allow an efficient approximation of the solutions of the coupled system. Therefore, a
standard finite element technique is used to analyze the problem.

The governing equations (27) for the coupled system are complemented by the following boundary con-
ditions for a cantilever beam (the electric boundary conditions are chosen in order to maximize the electro-
mechanical coupling):

W(O,p) = Wl(07p) = W,,(lvp) = WW(Lp) = lpl(07p) = lﬁ(l,p) =0. (36)

We now apply the tuning procedure to find the function f{p) and synthesize the multiresonant electric cir-
cuit. For this example we assume that the first three modes of vibration are to be controlled.

Since our goal is to tune the electric system to the first three mechanical frequencies, the rational function
f(p) will have four poles and five zeroes.

The procedure to numerically solve Eq. (27) with boundary conditions (36) requires a special technique
and is described in Appendix B.
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Fig. 8. Time evolution of the electrical (dark) and the mechanical (grey) systems, starting from initial conditions on the first three
mechanical modes. Thin and thick lines represent the kinematical descriptors (flux linkage and displacement) of a particular point of
the beam and the energy content respectively; (a) undamped, (b) damped.

For damping factor equal to zero, Fig. 8a exhibits the time evolution of the mechanical and the electrical
systems and of the electrical and the mechanical energy content, starting from initial conditions given on
the first three mechanical vibration modes. The strange evolution of the third mode is due to the “spill-over
effect” towards electrical eigenmodes. In fact the first and the second electric vibration modes have one of
their eigenfrequencies very close to the eigenfrequency of the third mechanical vibration mode, which is
therefore coupled with the first three electric modes. Therefore, the energy initially provided to the third
mechanical mode is distributed over the first three mechanical modes by means of the electric system.
We have plotted results in Fig. 8b for a system with numerically optimized damping factor. As expected,
the proposed device is actually capable of controlling and damping mechanical vibrations in the desired
modal range.

5. Conclusions

We have designed an electromechanical system comprised of a beam, piezoceramic actuators and a pas-
sive electrical network containing inductors, capacitors and resistors. The electrical system, comprised of
the piezoceramic patches affixed to the top and/or the bottom surfaces of the beam and the electric net-
work, has been modeled as a continuous system. It is reasonable to do so because of the large wavelengths
of the first few flexural modes of the beam relative to the distance between the patches. The impedance of
the network is selected to simultaneously control more than one mode of flexural vibration of the beam.
Three examples are given to demonstrate the effectiveness of the proposed control technique. In the first
one we simultaneously control first four flexural modes of a simply supported beam, and a semi-analytical
solution has been found. In the second one, we control the first two flexural modes of a clamped—clamped
beam, and a numerical solution, via modal projection, has been found. In the last example, we simulta-
neously control first three flexural modes of a cantilever beam, and numerical solutions, via a newly de-
signed FE-Runge-Kutta code, have been found. In all three examples the proposed device performs
excellently as a multimode vibration damper.
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Fig. 9. Single element of the modular electric line.

Appendix A. Derivation of governing equations of the e-system

For deriving the equation giving the flow of current in the electric circuit, an element of the circuit is
depicted in Fig. 9. The governing equations for this circuit are

I(x +dx) — I(x) = —pCV (x)dx, (37)
V(x4 dx) — V(x) = —H(p)I(x)dx. (38)

Here I is the current, V the voltage, C the capacitance of the PZT, p is the dimensionless Laplace transform
variable, Z(p) the electric impedance, and
RZ(p)
Hp)=———. 39
0 = %720 (39)
In the non-dissipative case (i.e. when the resistance R — oo) H(p) = Z(p).
In the limiting case of dx — 0, Egs. (37) and (38) become

I'=—pCV, V' =-H(p), (40)
which upon elimination of I and the introduction of the following non-dimensional variables
v=1e =S, flp) = LaCH(pn) (41)
V 0]
give
v" — pf(p)v = 0. (42)

Here L is a characteristic inductance/length and V* a characteristic voltage.

Appendix B. Details of numerical solution of Eqs. (27) and (36)

In order to numerically solve the problem defined by Eq. (27) and boundary conditions (36), we
introduce its representation in the time domain. For this purpose, we consider a general form of the func-

tion fip)
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mp+nyp’ + -+ ny1p
do +dop? + -+ -+ doy o2+ S(mp + mapd + -+ g p? )’

where r is the number of mechanical modes to be controlled and ¢ is the damping factor. Multiplying (27),
by the denominator of f{p) and arranging terms we obtain

f(p) =

(43)

Meno, 1[?2“1'([7 (M anz 1p —K Zdzz 2p >‘P(P) —5Kezn2i—1P2i71‘P(P)
i=1

+yCT (Z ni p2”> W(p) =0, (44)

i=1

where initial conditions have not been considered since they will be taken into account in the subsequent
time analysis. The inverse Laplace transform of (44) is

q@ @i-1)

r—1 (2i) r (2i-2) r
d d d
Mno,_ @‘P(f) + (Me Z N1 a2 K. ; dain dt2’> ¥(1) — K. ; Nai_ W‘P(t)
@i-1)
+ ’VCT (Z nai—1 dtzl ) (t) =0. (45)

Eq. (27); gives

d? d
M, — W(#) + K,W(7) —yC—-¥(¢) = 0. 46
W) + KaW(0) = C5 (1) (46)
We define
T 2 T " (47)
- dt ) - dt ) ) AR
From Egs. (45) and (46), using definitions (47), we get
d ~@-n - ~ (2i) 1 1 ! ~ (2i-2)
— ¥ = - ¥ - M_ K. ) dr,¥
dr Ny ;nz 1 Ryt © ; e
1 B L ~ (2i—1) 1 _ ! —~(2i-1)
5—M.'K P MY W (48)
+ nor—1 ¢ ¢ an ! /n2r—l ¢ ;nz 1 ’
%W(z"_” — MKW oMo,
Therefore we can state the problem in the following standard form:
x =Ax, x(0) = x,, (49)
where
X — { W W] . fwf2r72 AW12r71 ‘i} {i"l o ‘flv’2r72 lflv‘2r71 }T (50)

and A is the matrix of coefficients of Eqs. (47) and (48).

The system (49) of ordinary differential equations is numerically integrated with a Runge—Kutta algo-
rithm. However, since its dimensions can be huge (if ne is the number of elements in the mesh and r is
the number of mechanical modes to be controlled, A is a {6r ne X 6r ne} matrix), some preliminary reduc-
tion is mandatory. Since the matrix A is not symmetric, we must consider its right and left eigenvectors
(arranged in the matrices T,, T,;), which are defined by
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AT =T7A, T,A=iT, (51)

where 4 is the diagonal matrix of the eigenvalues of A.
We define

z=Tx, x=Tuy, (52)
which implies that

x=T,(T,T,) 'z (53)
Eq. (49) is then transformed into the following:

2=z, z(0)=Tx. (54)

Having found z, x can be determined from Eq. (53).

Using the eigenvector representation (51) and a proper choice of a reduced subspace of eigenvectors, the
system (54) of equations can be numerically solved. The choice of the eigenvectors to retain in the evolution
equations is non-trivial. In fact, due to the high order electric dispersive relation, at low frequencies
(namely, near the two accumulation points of Fig. 2) we still have countably many eigenvectors, with dif-
ferent mode shapes. Thus the range of selection of eigenvectors based on their frequencies is not enough to
reduce the number of modes involved in the evolution of the system. To make an accurate selection a wave-
number filter is necessary. We retain only modes with a relevant projection onto a given finite dimensional
functional space (for instance the space of polynomial on R with degree less than 2).

Appendix C. Synthesis of the electrical impedance

The rational function Z(s) derived by using the tuning procedure of Section 3 represents the impedance
of a LC TTN. We note that many different LC TTNs have the same equivalent impedance. Here we look
for a particular LC TTN represented by the given rational function. We use the Cauer method summarized
below. The impedance Z(s) has the following form (see Eqgs. (13) and (14)):

sB_OHzr'le (2,2 +5%)

Z(s) = —
;1:1] (p12 +52)

) B0a2i7l~)i eR. (55)

Hence its inverse

n—1,~2 2
; ; R
Y(s)=2Z""(s) = —Hz:;f{’zj $) R,
B[ E +s2) s
is the admittance of a LC TTN. Here R, is the residue at s = 0 of Y(s) and Y/(s). Eq. (56) shows that Y(s) is

the admittance of an inductor (say L,) of admittance 1/R; and connected in parallel with another LC TTN
of admittance

Y](S), (56)

_ SBIH:':lZ pi; +5°)
- n—1,/~ :
[T (Z%i +5%)
This can be inverted to get the corresponding impedance:

Zi(s) = 15 G+ ) :E
BT (P +57) 9

Yl(S)

+ Za(s)
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Fig. 10. Cauer iterative method for the synthesis of a LC TTN; arrows show the logical path between the steps.
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Fig. 11. For a cantilever aluminum beam, impedance for controlling (a) the first four vibration modes, (b) the first two vibration
modes, and (c) the first three vibration modes.

which is the impedance of a capacitor (say C)) of capacitance 1/R, (R, is the residue at s = 0 of Z(s)) con-
nected in series with an inductor of impedance Z(s). This procedure can be iterated until Zi(s) or Y(s)
reduces to the impedance/admittance of a single inductor/capacitor. The main steps of this procedure
are given in Fig. 10. The schematics of the LC TTNs which provide impedances needed in the applications
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presented in the previous sections are shown in Fig. 11a—c. A simple Mathematica code, which implements
the Cauer method, has been developed and used to obtain these results.

References

Alves Rade, Domingos, Valder Jr., Steffen, 2000. Optimisation of dynamic vibration absorbers over a frequency band. Mech. Syst.
Signal Process. 14, 679—690.

Andreaus, U., dell'Isola, F., Porfiri, M., 2004. Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control
10, 625-659.

dell'Isola, F., Vidoli, S., 1998. Continuum modelling of piezo-electro-mechanical truss beams: an application to vibration damping.
Arch. Appl. Mech.—Ing. Arch. 68, 1-19.

Fleming, A.J., Reza Moheimani, S.O., 2002. Optimization and implementation of multimode piezoelectric shunt damping systems.
IEEE/ASME Trans. Mechatron. 7, 87-94.

Hagood, N.W., von Flotow, A., 1991. Damping of structural vibrations with piezoelectric materials and passive electrical networks.
J. Sound Vib. 146, 243-268.

Hollkamp, J.J., 1994. Multimode passive vibration suppression with piezoelectric materials and resonant shunts. J. Int. Mater. Syst.
Struct. 5, 49-57.

Lesieutre, G.A., 1998. Vibration damping and control using shunted piezoelectric materials. Shock Vib. Digest 30, 187-195.

Park, C.H., Inman, D.J., 2003. Enhanced piezoelectric shunt design. Shock Vib. Digest 10, 127-133.

Vidoli, S., dell'Isola, F., 2000. Modal coupling in one-dimensional electromechanical structured continua. Acta Mech. 141 (1-2),
37-50.

Vidoli, S., dell'Isola, F., 2001. Vibration control in plates by uniformly distributed actuators interconnected via electric networks. Eur.
J. Mech. A/Solids 20, 435-456.

Walsh, J.L., 1960. Interpolation and Approximation by Rational Functions in the Complex Domain. American Mathematical Society.

Wu, S.-Y., 1998. Method for multiple mode piezoelectric shunting with single PZT transducer for vibration control. J. Int. Mater. Syst.
Struct. 9, 991-998.



	Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers
	Introduction
	Statement of the problem
	Mathematical framework
	Description of the system
	m-system
	e-system


	Tuning procedure
	Remarks on eigenfrequencies of the electric circuit

	Applications
	Simply supported beam
	Clamped ndash clamped beam
	Cantilever beam

	Conclusions
	Derivation of governing equations of the e-system
	Details of numerical solution of Eqs. (27) and (36)
	Synthesis of the electrical impedance
	References


